TSP Tours in Cubic Graphs: Beyond 4/3
نویسندگان
چکیده
After a sequence of improvements Boyd, Sitters, van der Ster, and Stougie proved that any 2-connected graph whose n vertices have degree 3, i.e., a cubic 2-connected graph, has a Hamiltonian tour of length at most (4/3)n, establishing in particular that the integrality gap of the subtour LP is at most 4/3 for cubic 2-connected graphs and matching the conjectured value of the famous 4/3 conjecture. In this paper we improve upon this result by designing an algorithm that finds a tour of length (4/3− 1/61236)n, implying that cubic 2-connected graphs are among the few interesting classes of graphs for which the integrality gap of the subtour LP is strictly less than 4/3. With the previous result, and by considering an even smaller , we show that the integrality gap of the TSP relaxation is at most 4/3− even if the graph is not 2-connected (i.e. for cubic connected graphs), implying that the approximability threshold of the TSP in cubic graphs is strictly below 4/3. Finally, using similar techniques we show, as an additional result, that every Barnette graph admits a tour of length at most (4/3 − 1/18)n.
منابع مشابه
The Saleman's Improved Tours for Fundamental Classes
Finding the exact integrality gap α for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3 ≤ α ≤ 3/2, and a famous conjecture states α = 4/3. For this problem, essentially two “fundamental” classes of instances have been proposed. This fundamental property means that in order to show t...
متن کاملTSP on Cubic and Subcubic Graphs
We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal values of the TSP and its linear programming relaxation, is 4/3. Using polyhedral tec...
متن کاملThe traveling salesman problem on cubic and subcubic graphs
We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NPhard. The problem is of interest because of its relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal values of the TSP and its linear programming relaxation (the subtour elimination relax...
متن کاملAn Improved Upper Bound for TSP in Cubic 3-Connected Graphs
We consider the classical minimum Travelling Salesman Problem on the class of 3-edge-connected cubic graphs. More specifically we consider their (shortest path) metric completions. The well-known conjecture states that the subtour elimination LP relaxation on the min TSP yields a 4/3 approximation factor, yet the best known approximation factor is 3/2. The 3-edge-connected cubic graphs are inte...
متن کاملProceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW 2009, Paris, France, June 2-4 2009
We present two approaches for the Euclidean TSP which compute high quality tours for large instances. Both approaches are based on pseudo backbones consisting of all common edges of good tours. The first approach starts with some pre-computed good tours. Using this approach we found record tours for seven VLSI instances. The second approach is window based and constructs from scratch very good ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 29 شماره
صفحات -
تاریخ انتشار 2012